Asymmetric - Public Key Cryptography

Alice

Threaths of insecure ArK generation $\mathscr{L}_{p}^{*}=\{1,2,3, \ldots, p-1\} ; * \bmod p$

ArK and YuK are related
PuT = F(PrK)
F is one-way function
Having PuK it is infeasible to find
Pr $=\mathrm{F}^{-1}$ (uK)
$\mathrm{F}(\mathrm{x})=a$ is OWF , if:

1. It easy to compute a, when F and x are given.
2. It is infeasible compute x when F and a are given.
Pr $=x<--$ randi $==>$ YuK $=a=g^{\mathrm{x}} \bmod \mathrm{p}$ Public Parameters PP $=(\mathrm{p}, \mathrm{g})$

$$
\begin{aligned}
& p \sim 2^{2048},|p| \cong 2048 \mathrm{bits} \\
& p \sim 2^{28},|p| \cong 28 \text { bits }
\end{aligned}
$$

Asymmetric Encryption-Decryption: El-Gamal Encryption-Decryption
p=268435019; g=2;

Let message $\boldsymbol{m} \sim$ needs to be encrypted, then it must be encoded in decimal number $\boldsymbol{m}: 1<\boldsymbol{m}<\boldsymbol{p}$.
E.g. $\boldsymbol{m}=111222$. Then $\boldsymbol{m} \bmod p=\boldsymbol{m}$.

27 mod $54=27$
$27 \bmod 21=6 \neq 27$
$A: \quad P_{u} K_{A}=a \quad B:$ is able to encrypt m to A : $m<p$
Turing \rightarrow Enigma

$$
\beta: \quad i \leftarrow \operatorname{rand} i\left(\mathscr{L}_{p}^{*}\right) \quad \mathscr{L}_{p-1}=\{0,1,2, \ldots, p-1\} \bmod ^{*}(p-1)
$$

$$
\left.\begin{array}{l}
E=m: a^{i} \bmod p \\
D=g^{i} \bmod p
\end{array}\right\} c=(E, D) \longrightarrow \left\lvert\, \begin{aligned}
& f: \text { is able to decrypt } \\
& c=(E, D) \text { using bet } \operatorname{Pr} K_{A}= \\
& (-x) \bmod (p-1)=(p-x) \bmod (p-1)=\left\lvert\, \begin{array}{l}
-x \bmod (p-1) \bmod p \\
1 \cdot D^{-x} \bmod p=m \\
2 \cdot(\overline{p-1}-x) \bmod (p-1)
\end{array}\right.
\end{aligned}\right.
$$

$$
(p-1) \bmod (p-1)=O \text { since }
$$

$$
(-x) \bmod (p-1)=(p-1-x)
$$

$$
\frac{p-1}{p-1} \frac{(p-1}{1}
$$

$$
D^{-x} \bmod p=D^{p-1-x} \bmod p
$$

$$
\gg D_{n} m x=m o d-\exp (D, p-1-x, p)
$$

Correctness

$$
\begin{gathered}
E_{n c}\left(P_{u K}=a, i, m\right)=c=(E, D)=\left(E=m \cdot a^{i} \bmod p ; D=g^{i} \bmod p\right) \\
\begin{aligned}
& \operatorname{Dec}\left(\operatorname{Pr} K_{A}=x, c\right)=E \cdot D^{-x} \bmod p=m \cdot a^{i} \cdot\left(g^{i}\right)^{-x} \bmod p= \\
&=m \cdot\left(\frac{g^{x}}{a}\right)^{i} \cdot g^{-i x}=m \cdot g^{x i} \cdot g^{-i x}=m \cdot g^{x i}-i x \\
& \bmod p=m \cdot g^{0} \bmod p= \\
&=m \cdot 1 \bmod p=m \bmod p=m=111222
\end{aligned}
\end{gathered}
$$

since $m<P$
If $m>p \rightarrow m \bmod p \neq m ; 27 \bmod 5=2 \neq 27$. ASCII: 8 bits per char,
If $m<p \rightarrow m \bmod p=m ; 19 \bmod 31=19 \cdot \frac{2048}{8}=256$ char.
Decryption is correct if $m<P$.
Large file encryption Hybriol encryption

Authenticated Key Agreement Protocol using ElGamal Encryption and Signature.

Hybrid encryption for a large files combining asymmetric and symmetric encryption method.

Hybrid encryption. Let \boldsymbol{M} be a large finite length file, egg. of gigabytes length.
Then to encrypt this file using asymmetric encryption is extremely ineffective since we must split it into millions of parts having 2048 bit length and encrypt every part separately.
The solution can be found by using asymmetric encryption together with symmetric encryption, say AES-128.
It is named as hybrid encryption method.
For this purpose the Key Agreement Protocol (KAP) using asymmetric encryption for the same symmetric secret key \boldsymbol{k} agreement must be realized and encryption of \boldsymbol{M} realized by symmetric encryption method, say AES-128.

AKAP: Symmetric Enc \& Asymmetric Enc \& Digital Sign

Hybrid Encryption
How to encrypt large data file M: Hybrid enc-dec method.

1. Parties must agree on common symmetric secret key k. for symmetric block cipher, leg. AES-128, 192,256 bits.

A: $\operatorname{Pr} K_{A}=x ; \operatorname{PuK}_{A}=a$.
$B: \operatorname{PrK}_{B}=y ; \operatorname{PuK}_{B}=b$.

$$
\operatorname{PuK}_{B}=b_{0}
$$

$$
\operatorname{Puk}_{A}=a_{0}
$$

2) M-large file to be encrypted

$$
E_{k}(M)=A E S_{k}(M)=C
$$

3) Signs ciphertext C
3.1) $h=H(G)$
3.2) $\operatorname{Sign}\left(\operatorname{Pr} K_{A}=x, h\right)=\sigma=(r, s)$
(1.s. Verify if $P_{H} K_{A}$ and $C_{r e r} t_{A}$ are valid? 1.2. Verify if 6 on $h=H\left(C_{1}\right)$ is valid?

$$
\begin{aligned}
& h^{\prime}=H(C) \\
& \operatorname{Ver}\left(\operatorname{Puk}_{A}, \sigma, h^{\prime}\right)=\text { True }
\end{aligned}
$$

2. $\operatorname{Dec}\left(\operatorname{Pr} K_{B}, c\right)=k$
$3 \cdot D_{k}(G)=A E S_{k}(G)=M$.

A was using so called encrypt - and-sign ($E-\&-S$) paradigm. ($E-\&-S$) paradigm is recomended to prevent so called
Choosen ciphertext Attacks - CCA: it is most strong attack but most complex in realization.

ElGamal encryption is probabilistic: encryption of the same message (m) two times yields the different cuphertexts c_{1} and c_{2}.
1-st encryption:

$$
i_{1} \leftarrow \operatorname{ranoli}\left(\mathscr{L}_{p}^{*}\right) \quad i_{1} \neq i_{2} \quad i_{2} \leftarrow \operatorname{rand} i\left(\mathscr{L}_{p}^{*}\right)
$$

$$
\left.\begin{array}{l}
E_{1}=m \cdot a^{i_{1}} \bmod p \\
D_{1}=q^{i_{1}} \bmod p
\end{array}\right\} C_{1}=\left(E_{1}, D_{1}\right)\left\{\begin{array}{l}
E_{2}=\left(m \cdot a^{i_{2}} \bmod p\right. \\
D_{2}=q^{i_{2}} \bmod p
\end{array}\right\} C_{2}=\left(E_{2}, D_{2}\right)
$$

$$
c_{1} \neq c_{2} \quad \text { Enigma }
$$

Necessity of probabilistic encryption.

Encrypting the same message with textbook RSA always yields the same ciphertext, and so we actually obtain that any deterministic scheme must be insecure for multiple encryptions.

Tavern episode

Enigma

